Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Integrated geophysical and hydrothermal models of flank degassing and fluid flow at Masaya volcano, Nicaragua

Identifieur interne : 000036 ( Main/Exploration ); précédent : 000035; suivant : 000037

Integrated geophysical and hydrothermal models of flank degassing and fluid flow at Masaya volcano, Nicaragua

Auteurs : S. C. P. Pearson [Nouvelle-Zélande] ; K. Kiyosugi [États-Unis] ; H. L. Lehto [États-Unis] ; J. A. Saballos [États-Unis] ; C. B. Connor [États-Unis] ; W. E. Sanford [États-Unis]

Source :

RBID : ISTEX:1F8E1BD58476F01BF189B56363F7D73624F13826

Descripteurs français

English descriptors

Abstract

We investigate geologic controls on circulation in the shallow hydrothermal system of Masaya volcano, Nicaragua, and their relationship to surface diffuse degassing. On a local scale (∼250 m), relatively impermeable normal faults dipping at ∼60° control the flowpath of water vapor and other gases in the vadose zone. These shallow normal faults are identified by modeling of a NE‐SW trending magnetic anomaly of up to 2300 nT that corresponds to a topographic offset. Elevated SP and CO2 to the NW of the faults and an absence of CO2 to the SE suggest that these faults are barriers to flow. TOUGH2 numerical models of fluid circulation show enhanced flow through the footwalls of the faults, and corresponding increased mass flow and temperature at the surface (diffuse degassing zones). On a larger scale, TOUGH2 modeling suggests that groundwater convection may be occurring in a 3–4 km radial fracture zone transecting the entire flank of the volcano. Hot water rising uniformly into the base of the model at 1 × 10−5 kg/m2s results in convection that focuses heat and fluid and can explain the three distinct diffuse degassing zones distributed along the fracture. Our data and models suggest that the unusually active surface degassing zones at Masaya volcano can result purely from uniform heat and fluid flux at depth that is complicated by groundwater convection and permeability variations in the upper few km. Therefore isolating the effects of subsurface geology is vital when trying to interpret diffuse degassing in light of volcanic activity.
Geophysics combined with modeling is a powerful tool to map shallow subsurface Groundwater convection on a volcano can explain diffuse degassing distribution Near‐surface structure is a major control on surface fluid flux and temperature

Url:
DOI: 10.1029/2012GC004117


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Integrated geophysical and hydrothermal models of flank degassing and fluid flow at Masaya volcano, Nicaragua</title>
<author>
<name sortKey="Pearson, S C P" sort="Pearson, S C P" uniqKey="Pearson S" first="S. C. P." last="Pearson">S. C. P. Pearson</name>
</author>
<author>
<name sortKey="Kiyosugi, K" sort="Kiyosugi, K" uniqKey="Kiyosugi K" first="K." last="Kiyosugi">K. Kiyosugi</name>
</author>
<author>
<name sortKey="Lehto, H L" sort="Lehto, H L" uniqKey="Lehto H" first="H. L." last="Lehto">H. L. Lehto</name>
</author>
<author>
<name sortKey="Saballos, J A" sort="Saballos, J A" uniqKey="Saballos J" first="J. A." last="Saballos">J. A. Saballos</name>
</author>
<author>
<name sortKey="Connor, C B" sort="Connor, C B" uniqKey="Connor C" first="C. B." last="Connor">C. B. Connor</name>
</author>
<author>
<name sortKey="Sanford, W E" sort="Sanford, W E" uniqKey="Sanford W" first="W. E." last="Sanford">W. E. Sanford</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1F8E1BD58476F01BF189B56363F7D73624F13826</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1029/2012GC004117</idno>
<idno type="url">https://api.istex.fr/document/1F8E1BD58476F01BF189B56363F7D73624F13826/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000283</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000283</idno>
<idno type="wicri:Area/Istex/Curation">000283</idno>
<idno type="wicri:Area/Istex/Checkpoint">000013</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000013</idno>
<idno type="wicri:doubleKey">1525-2027:2012:Pearson S:integrated:geophysical:and</idno>
<idno type="wicri:Area/Main/Merge">000036</idno>
<idno type="wicri:Area/Main/Curation">000036</idno>
<idno type="wicri:Area/Main/Exploration">000036</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Integrated geophysical and hydrothermal models of flank degassing and fluid flow at Masaya volcano, Nicaragua</title>
<author>
<name sortKey="Pearson, S C P" sort="Pearson, S C P" uniqKey="Pearson S" first="S. C. P." last="Pearson">S. C. P. Pearson</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>GNS Science, Wairakei Research Centre, 114 Karetoto Road, RD4, Taupo 3384</wicri:regionArea>
<wicri:noRegion>Taupo 3384</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Nouvelle-Zélande</country>
</affiliation>
</author>
<author>
<name sortKey="Kiyosugi, K" sort="Kiyosugi, K" uniqKey="Kiyosugi K" first="K." last="Kiyosugi">K. Kiyosugi</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Geology, University of South Florida, 4202 E. Fowler Avenue, SCA 528, Tampa, Florida 33620</wicri:regionArea>
<orgName type="university">Université de Floride du Sud</orgName>
<placeName>
<settlement type="city">Tampa</settlement>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lehto, H L" sort="Lehto, H L" uniqKey="Lehto H" first="H. L." last="Lehto">H. L. Lehto</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Geology, University of South Florida, 4202 E. Fowler Avenue, SCA 528, Tampa, Florida 33620</wicri:regionArea>
<orgName type="university">Université de Floride du Sud</orgName>
<placeName>
<settlement type="city">Tampa</settlement>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Saballos, J A" sort="Saballos, J A" uniqKey="Saballos J" first="J. A." last="Saballos">J. A. Saballos</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Geology, University of South Florida, 4202 E. Fowler Avenue, SCA 528, Tampa, Florida 33620</wicri:regionArea>
<orgName type="university">Université de Floride du Sud</orgName>
<placeName>
<settlement type="city">Tampa</settlement>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Connor, C B" sort="Connor, C B" uniqKey="Connor C" first="C. B." last="Connor">C. B. Connor</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Geology, University of South Florida, 4202 E. Fowler Avenue, SCA 528, Tampa, Florida 33620</wicri:regionArea>
<orgName type="university">Université de Floride du Sud</orgName>
<placeName>
<settlement type="city">Tampa</settlement>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sanford, W E" sort="Sanford, W E" uniqKey="Sanford W" first="W. E." last="Sanford">W. E. Sanford</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>U.S. Geological Survey, Mail Stop 431, Reston, Virginia 20192</wicri:regionArea>
<wicri:noRegion>Virginia 20192</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Geochemistry, Geophysics, Geosystems</title>
<title level="j" type="alt">GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS</title>
<idno type="ISSN">1525-2027</idno>
<idno type="eISSN">1525-2027</idno>
<imprint>
<biblScope unit="vol">13</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page-count">21</biblScope>
<date type="published" when="2012-05">2012-05</date>
</imprint>
<idno type="ISSN">1525-2027</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1525-2027</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active crater</term>
<term>Anomaly</term>
<term>Basalt</term>
<term>Basaltic</term>
<term>Caldera</term>
<term>Central america</term>
<term>Chiodini</term>
<term>Cinder</term>
<term>Comalito</term>
<term>Comalito cinder cone</term>
<term>Convection</term>
<term>Crater</term>
<term>Degassing</term>
<term>Degassing zone</term>
<term>Degassing zones</term>
<term>Diffuse</term>
<term>Diffuse degassing</term>
<term>Diffuse degassing zones</term>
<term>Distinct degassing zones</term>
<term>Earth planet</term>
<term>Enthalpy</term>
<term>Equal mixture</term>
<term>Fault core</term>
<term>Flank</term>
<term>Flank degassing</term>
<term>Fluid circulation</term>
<term>Fluid flow</term>
<term>Fluid flux</term>
<term>Fluid injection</term>
<term>Fluid injection rate</term>
<term>Fluid transport</term>
<term>Flux measurements</term>
<term>Footwall</term>
<term>Fracture</term>
<term>Fracture zone</term>
<term>Geochemistry</term>
<term>Geochemistry geophysics geosystems</term>
<term>Geol</term>
<term>Geophys</term>
<term>Geophysical</term>
<term>Geophysics</term>
<term>Geosystems</term>
<term>Geotherm</term>
<term>Good agreement</term>
<term>Groundwater</term>
<term>Groundwater convection</term>
<term>Heat injection</term>
<term>Heat injection rate</term>
<term>Heat output</term>
<term>High permeability</term>
<term>Hydrologic system</term>
<term>Hydrothermal</term>
<term>Hydrothermal models</term>
<term>Hydrothermal system</term>
<term>Hydrothermal systems</term>
<term>Impermeable</term>
<term>Impermeable faults</term>
<term>Injection</term>
<term>Injection rate</term>
<term>Lava</term>
<term>Lava ponding</term>
<term>Lett</term>
<term>Lewicki</term>
<term>Lower permeability</term>
<term>Macneil</term>
<term>Magmatic</term>
<term>Magnetic anomalies</term>
<term>Magnetic anomaly</term>
<term>Magnetic data</term>
<term>Magnetic measurements</term>
<term>Magnetic profiles</term>
<term>Magnetization</term>
<term>Masaya</term>
<term>Masaya caldera</term>
<term>Masaya cone</term>
<term>Masaya hydrothermal system</term>
<term>Masaya hydrothermal system figure</term>
<term>Masaya volcano</term>
<term>Maximum heat flux</term>
<term>Maximum temperature</term>
<term>Model results</term>
<term>Modeling</term>
<term>Nicaragua</term>
<term>Normal faults</term>
<term>Numerical modeling</term>
<term>Numerical models</term>
<term>Permeability</term>
<term>Permeability variations</term>
<term>Plume</term>
<term>Rock permeability</term>
<term>Rymer</term>
<term>Santiago</term>
<term>Santiago crater</term>
<term>Scoria</term>
<term>Study area</term>
<term>Surface temperatures</term>
<term>Topographic</term>
<term>Tough2</term>
<term>Tough2 model</term>
<term>Tough2 modeling</term>
<term>Vadose</term>
<term>Vadose zone</term>
<term>Volcanic</term>
<term>Volcanic activity</term>
<term>Volcano</term>
<term>Volcanol</term>
<term>Water table</term>
<term>Water table temperature</term>
<term>Water vapor</term>
<term>West fault</term>
<term>Zlotnicki</term>
<term>Zone</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Active crater</term>
<term>Anomaly</term>
<term>Basalt</term>
<term>Basaltic</term>
<term>Caldera</term>
<term>Central america</term>
<term>Chiodini</term>
<term>Cinder</term>
<term>Comalito</term>
<term>Comalito cinder cone</term>
<term>Convection</term>
<term>Crater</term>
<term>Degassing</term>
<term>Degassing zone</term>
<term>Degassing zones</term>
<term>Diffuse</term>
<term>Diffuse degassing</term>
<term>Diffuse degassing zones</term>
<term>Distinct degassing zones</term>
<term>Earth planet</term>
<term>Enthalpy</term>
<term>Equal mixture</term>
<term>Fault core</term>
<term>Flank</term>
<term>Flank degassing</term>
<term>Fluid circulation</term>
<term>Fluid flow</term>
<term>Fluid flux</term>
<term>Fluid injection</term>
<term>Fluid injection rate</term>
<term>Fluid transport</term>
<term>Flux measurements</term>
<term>Footwall</term>
<term>Fracture</term>
<term>Fracture zone</term>
<term>Geochemistry</term>
<term>Geochemistry geophysics geosystems</term>
<term>Geol</term>
<term>Geophys</term>
<term>Geophysical</term>
<term>Geophysics</term>
<term>Geosystems</term>
<term>Geotherm</term>
<term>Good agreement</term>
<term>Groundwater</term>
<term>Groundwater convection</term>
<term>Heat injection</term>
<term>Heat injection rate</term>
<term>Heat output</term>
<term>High permeability</term>
<term>Hydrologic system</term>
<term>Hydrothermal</term>
<term>Hydrothermal models</term>
<term>Hydrothermal system</term>
<term>Hydrothermal systems</term>
<term>Impermeable</term>
<term>Impermeable faults</term>
<term>Injection</term>
<term>Injection rate</term>
<term>Lava</term>
<term>Lava ponding</term>
<term>Lett</term>
<term>Lewicki</term>
<term>Lower permeability</term>
<term>Macneil</term>
<term>Magmatic</term>
<term>Magnetic anomalies</term>
<term>Magnetic anomaly</term>
<term>Magnetic data</term>
<term>Magnetic measurements</term>
<term>Magnetic profiles</term>
<term>Magnetization</term>
<term>Masaya</term>
<term>Masaya caldera</term>
<term>Masaya cone</term>
<term>Masaya hydrothermal system</term>
<term>Masaya hydrothermal system figure</term>
<term>Masaya volcano</term>
<term>Maximum heat flux</term>
<term>Maximum temperature</term>
<term>Model results</term>
<term>Modeling</term>
<term>Nicaragua</term>
<term>Normal faults</term>
<term>Numerical modeling</term>
<term>Numerical models</term>
<term>Permeability</term>
<term>Permeability variations</term>
<term>Plume</term>
<term>Rock permeability</term>
<term>Rymer</term>
<term>Santiago</term>
<term>Santiago crater</term>
<term>Scoria</term>
<term>Study area</term>
<term>Surface temperatures</term>
<term>Topographic</term>
<term>Tough2</term>
<term>Tough2 model</term>
<term>Tough2 modeling</term>
<term>Vadose</term>
<term>Vadose zone</term>
<term>Volcanic</term>
<term>Volcanic activity</term>
<term>Volcano</term>
<term>Volcanol</term>
<term>Water table</term>
<term>Water table temperature</term>
<term>Water vapor</term>
<term>West fault</term>
<term>Zlotnicki</term>
<term>Zone</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Nicaragua</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Géochimie</term>
<term>Géophysique</term>
<term>Eau souterraine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">We investigate geologic controls on circulation in the shallow hydrothermal system of Masaya volcano, Nicaragua, and their relationship to surface diffuse degassing. On a local scale (∼250 m), relatively impermeable normal faults dipping at ∼60° control the flowpath of water vapor and other gases in the vadose zone. These shallow normal faults are identified by modeling of a NE‐SW trending magnetic anomaly of up to 2300 nT that corresponds to a topographic offset. Elevated SP and CO2 to the NW of the faults and an absence of CO2 to the SE suggest that these faults are barriers to flow. TOUGH2 numerical models of fluid circulation show enhanced flow through the footwalls of the faults, and corresponding increased mass flow and temperature at the surface (diffuse degassing zones). On a larger scale, TOUGH2 modeling suggests that groundwater convection may be occurring in a 3–4 km radial fracture zone transecting the entire flank of the volcano. Hot water rising uniformly into the base of the model at 1 × 10−5 kg/m2s results in convection that focuses heat and fluid and can explain the three distinct diffuse degassing zones distributed along the fracture. Our data and models suggest that the unusually active surface degassing zones at Masaya volcano can result purely from uniform heat and fluid flux at depth that is complicated by groundwater convection and permeability variations in the upper few km. Therefore isolating the effects of subsurface geology is vital when trying to interpret diffuse degassing in light of volcanic activity.</div>
<div type="abstract">Geophysics combined with modeling is a powerful tool to map shallow subsurface Groundwater convection on a volcano can explain diffuse degassing distribution Near‐surface structure is a major control on surface fluid flux and temperature</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Nouvelle-Zélande</li>
<li>États-Unis</li>
</country>
<region>
<li>Floride</li>
</region>
<settlement>
<li>Tampa</li>
</settlement>
<orgName>
<li>Université de Floride du Sud</li>
</orgName>
</list>
<tree>
<country name="Nouvelle-Zélande">
<noRegion>
<name sortKey="Pearson, S C P" sort="Pearson, S C P" uniqKey="Pearson S" first="S. C. P." last="Pearson">S. C. P. Pearson</name>
</noRegion>
<name sortKey="Pearson, S C P" sort="Pearson, S C P" uniqKey="Pearson S" first="S. C. P." last="Pearson">S. C. P. Pearson</name>
</country>
<country name="États-Unis">
<region name="Floride">
<name sortKey="Kiyosugi, K" sort="Kiyosugi, K" uniqKey="Kiyosugi K" first="K." last="Kiyosugi">K. Kiyosugi</name>
</region>
<name sortKey="Connor, C B" sort="Connor, C B" uniqKey="Connor C" first="C. B." last="Connor">C. B. Connor</name>
<name sortKey="Lehto, H L" sort="Lehto, H L" uniqKey="Lehto H" first="H. L." last="Lehto">H. L. Lehto</name>
<name sortKey="Saballos, J A" sort="Saballos, J A" uniqKey="Saballos J" first="J. A." last="Saballos">J. A. Saballos</name>
<name sortKey="Sanford, W E" sort="Sanford, W E" uniqKey="Sanford W" first="W. E." last="Sanford">W. E. Sanford</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000036 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000036 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:1F8E1BD58476F01BF189B56363F7D73624F13826
   |texte=   Integrated geophysical and hydrothermal models of flank degassing and fluid flow at Masaya volcano, Nicaragua
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021